Minggu, 17 Mei 2015

TRIGONOMETRI

PENGERTIAN  Trigonometri
Trigonometri (dari bahasa Yunanitrigo non = tiga sudut danme tro =
mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut
segi tiga dan fungsiTrigonometri kseperti sinus, cosinus, dan tangen.
Ada banyak aplikasi trigonometri salah satunya adalah teknik triangulasi
yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintangterdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistemnavigasi satelit.
Bidang lainnya yang menggunakan trigonometri termasuk astronomi
(dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik,
optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi,
pencitraan medis/medical imaging farmasi, kimia, teori angka seismologi,
meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dangeodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, tekniksipil, grafik komputer, kartografi, kristalografi.
Fungsi trigonometri adalah hal yang sangat penting dalam sains, teknik,
arsitektur dan bahkan farmasi.
Ukuran Sudut
Sudut adalah ukuran jumlah rotasi antar dua potongan garis. Kedua potongan garis (sinar) ini dinamakan sisi awal dan sisi terminal.
Bila rotasinya bersifat berlawanan arah jarum jam, sudutnya positif. Jika searah jarum jam, sudutnya negatif.
Sudut sering diukur dalam derajat atau radian. Ada satuan ukur sudut lain yang disebut gradian. Sudut siku-siku dibagi menjadi 100 gradian. Gradian digunakan oleh surveyor, namun tidak umum dipakai dalam matematika. Kamu bisa menemukan tombolnya, grad, di kalkulator ilmiah.
Ukuran Sudut 1 putaran = 360 derajat (360°) = 2π radian

Perbandingan trigonometri
Catatan:
Sin = sinus
cos = cosinus
sec = secans
cosec/Csc = cosecans
tan/Tg = tangens
cot/Ctg = cotangens 

Identitas Trigonometri
Dari nilai fungsi trigonometri tersebut kemudian diperoleh identitas trigonometri. Identitas trigonometri adalah suatu persamaan dari fungsi trigonometri yang bernilai benar untuk setiap sudutnya dengan kedua sisi ruasnya terdefinisi. Identitas trigonometri terbagi 3, yaitu Identitas Kebalikan, Identitas Perbandingan dan Identitas Phytagoras yang masing-masing memiliki fungsi dasar, yaitu:
Identitas Kebalikan
Identitas Perbandingan
Identitas Phytagoras
Cosec A = 1/ sin A
Sec A = 1/cos A
Cot A = 1/ tan A
Tan A = Sin A/ Cos A
Cot A = Cos A / Sin A
Cos2 A + Sin2 A = 1
1 + tan2 A = Sec2 A
1 + Cot2 A = Cosec2 A
Kuadran
Kuadran adalah pembagian daerah pada sistem koordinat kartesius → dibagi dalam 4 daerah
Nilai perbandingan trigonometri untuk sudut-sudut di berbagai kuadran memenuhi aturan seperti pada gambar:

 Untuk sudut b > 360° → b = (k . 360 + a) → b = a
(k = bilangan bulat > 0)
Mengubah fungsi trigonometri suatu sudut ke sudut lancip

 Jika menggunakan 90 ± a atau 270 ± a maka fungsi berubah:
sin ↔ cos
tan ↔ cot
sec ↔ csc

Jika menggunakan 180 ± a atau 360 ± a maka fungsi tetap
 
 
Identitas Trigonometri
Sehingga, secara umum, berlaku:
sin2a + cos2a = 1
1 + tan2a = sec2a
1 + cot2a = csc2a
Grafik fungsi trigonometri
y = sin x

y = cos x

y = tan x

y = cot x

y = sec x

y = csc x

Tidak ada komentar:

Posting Komentar